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We introduce a parameter W�� ,L�= ����m��2 / �m2�−2� / ��−2� which like the kurtosis �Binder cumulant� is
a phenomenological coupling characteristic of the shape of the distribution p�m� of the order parameter m. To
demonstrate the use of the parameter we analyze extensive numerical data obtained from density-of-states
measurements on the canonical simple-cubic spin-1/2 Ising ferromagnet, for sizes L=4 to L=256. Using the W
parameter accurate estimates are obtained for the critical inverse temperature �c=0.2216541�2�, and for the
thermal exponent �=0.6308�4�. In this system at least, corrections to finite-size scaling are significantly weaker
for the W parameter than for the Binder cumulant.
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I. INTRODUCTION

Studies of the critical properties of model systems using
numerical simulations are necessarily limited to samples of
finite size. Finite-size scaling �FSS� techniques are essential
in this context and a renormalization group theory �RGT� of
FSS is well established.1–7 At the critical point the shape of
the distribution of the order parameter p�m� �throughout we
will use terminology appropriate to ferromagnetism� is inde-
pendent of size L to within finite-size correction factors.

One widely used parameter characteristic of p�m� is the
kurtosis of the distribution, U4= �m4� / �m2�2. The kurtosis is
often expressed in terms of the Binder cumulant8

g��,L� =
1

2
�3 − U4��,L�� �1�

because with this normalization g�0,L�=0 in the high-
temperature Gaussian limit �this is not strictly true for very
small L� and g�� ,L�=1 in the low-temperature ferromag-
netic �nondegenerate ground state� limit ���J /kBT is as
usual the normalized inverse temperature�. For a given
sample geometry �such as a �hyper�cube� the thermodynamic
�large L� limit of g��c ,L� is a universal parameter for all
systems in the same universality class. Again in the large L
limit FSS theory shows that the slope �g�� ,L� /��	L1/� at
�c where � is the standard thermal critical exponent. There
are however corrections to FSS which must be taken into
account at all finite L.

The Binder parameter g�� ,L� is not the only distribution
“shape” parameter having these properties. We will introduce
and illustrate on the simple-cubic �sc� S=1 /2 Ising ferro-
magnet an alternative parameter W�� ,L� which has some
technical advantages at least in this case, in particular, having
corrections to FSS which are weaker than those of the Binder
parameter. It should be noted that our conclusions apply only
to the particular case studied here and that the situation may
be different for, say, other lattices. However, if this turns out
to be a general property the W parameter could be very help-
ful for estimating critical properties numerically in more dif-
ficult cases where simulations are intrinsically restricted to
more moderate size samples. Already for the three-

dimensional �3D� Ising ferromagnet we obtain rather precise
estimates for the critical inverse temperature �c and the ther-
mal critical exponent � using this parameter.

II. PHENOMENOLOGICAL COUPLINGS

A “phenomenological coupling” is broadly a parameter
which becomes L independent at �c in the thermodynamic
limit.7 For ���c the moment distribution tends to a Gauss-
ian and for ���c it tends to the sum of two delta functions
but at ���c the ratios acquire nontrivial universal values.
This motivated the introduction of the “Binder cumulant”
and other phenomenological couplings as well as the Binder
parameter, the normalized second-moment correlation length
��� ,L� /L, which is an important phenomenological cou-
pling. For instance, in the two-dimensional Ising case Salas
and Sokal6 studied in detail the first four even magnetization-
moment ratios and the correlation-length ratio. Sixth-order
cumulant ratios, requiring �m6� besides �m2� and �m4� were
also studied in Ref. 8. It should be noticed that below Tc both
the Binder parameter and ��� ,L� /L are defined in terms of
nonconnected distribution sums. While g�� ,L� is defined
such that g�� ,L�=1, the conventional definition of ��� ,L�
leads to ��� ,L� /L=� for a system with a nondegenerate
ground state. A phenomenological coupling with a different
normalization, defined by R��� ,L�=��� ,L� / �L+��� ,L��,
would be closer in spirit to the Binder cumulant.

The standard RGT FSS expression with leading correction
terms for a phenomenological coupling R�� ,L� such as
g�� ,L�, the normalized correlation length ��� ,L� /L or the
W�� ,L� to be introduced below is

R��,L� = R�u�L
1/�� + v	R	�u�L

1/��L−	 + ¯


 Rc + ��R/���0c��L1/� + ¯ + c	L−	 + ¯ , �2�

where � is the thermal scaling variable �for instance �=1
−� /�c�, u� is the thermal scaling field, 	=
 /� is a universal
scaling-correction exponent, and the other parameters �criti-
cal temperature and critical amplitudes� are nonuniversal
constants appropriate for each particular system. The second
line is a good approximation as long as �L1/��1. Thus
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R��c,L� = Rc�1 + c	L−	 + ¯� �3�

and

��R/����c
= KL1/��1 + K	L−	 + ¯� . �4�

Another important conclusion8 is that the intersection tem-
peratures for R�� ,L� and R�� ,sL�, denoted �cross�L ,s�, con-
verge as

�cross − �c 	 L−�	+1/��. �5�

The parameter W�� ,L� which we introduce is a function
of the ratio of the variance of the modulus of m

�mod = ���m� − ��m���2� = �m2� − ��m��2 �6�

to the variance of m

� = ��m − �m��2� = �m2� − �m�2 �7�

For a finite L ferromagnet in zero applied field, which is the
case that we will discuss explicitly, the distribution p�m� is
always symmetric so �m�=0 even below the critical tempera-
ture, thus �= �m2�.

We will define the normalized parameter

W = 1 −
�

� − 2

�mod

�
�8�

or

W =
�U2 − 2

� − 2
, �9�

where U2= ��m��2 / �m2�. The normalization has been chosen
such that, as for the Binder parameter, W�� ,L�=0 in the
high-temperature Gaussian limit and W�� ,L�=1 in the low-
temperature ferromagnetic limit. As W�� ,L� is also a param-
eter characteristic of the shape of the distribution p�m�, it can
be considered to be another phenomenological coupling and
so will share all the formal finite-size scaling properties of
g�� ,L�.

By analogy with “kurtosis” �derived from the Greek word
for a curve or bulge� we propose to name W the “dichokur-
tosis,” referring to the process of dividing into two parts, i.e.,
a unimodal distribution shifting into a bimodal one.

As a demonstration, extensive data on W�� ,L� will be
discussed for the canonical case of the simple-cubic spin S
=1 /2 Ising ferromagnet. Though we will not discuss this
point further here, the properties of the distribution p��m�� are
of particular interest when the regime T�Tc is studied as
well as T�Tc. Above Tc, �m��0 in zero applied field; the
connected and nonconnected susceptibilities

�conn = �m2� − �mh�2, �10�

where �mh� is the magnetization that would be measured in
an infinitesimal applied field, and

�non = �m2� − �m�2 �11�

are identical. Below Tc it is the connected susceptibility
which is physically significant in the thermodynamic limit.
For finite L the distribution p�m� consists approximately of
two peaks centered on ��m��. As �−�c and L increase this

approximation gets better and better because the peaks nar-
row so that

��m�� 
 �mh� . �12�

Hence �mod�� ,L�
�conn�� ,L�.
We have no justification for claiming that the U2 ratio is

optimal in any sense. One could just as well define a family
of ratios

Ur = ��m�r/2�2/��m�r� . �13�

However, since U2 involves only integer powers it certainly
makes for a natural and attractive candidate. Note that mo-
ments of the form ��m�r� for odd or noninteger r are not
obtainable as derivatives of the free energy which makes
them less physical creatures. Such moments could then have
inherent properties related to the underlying distribution
rather than the physical model’s scaling properties. With this
caveat in mind we now proceed to study the behavior of W
and g for the case in hand; the simple-cubic lattice.

III. NUMERICAL METHODS

The physical parameters for finite-size samples from L
=4 up to L=256 �16 777 216 spins� were estimated using a
density-of-states-function method. When studying a statisti-
cal mechanical model complete information can, in principle,
be obtained through the density-of-states function. From
complete knowledge of the density of states one can imme-
diately work with the microcanonical �fixed energy� en-
semble and of course also compute the partition function and
through it have access to the canonical �fixed temperature�
ensemble as well. The main problem here is that computing
the exact density of states for systems of even modest size is
a very hard numerical task. However, several sampling
schemes have been given for obtaining approximate density
of states, of which the best known are the Wang and
Landau,9 and Wang and Swendsen10 methods. In Ref. 11
various methods are discussed in a common framework. For
work in the microcanonical ensemble the sampling methods
give all the information needed. Using them one can find the
density of states in an energy interval around the critical
region and that is all that is required for most investigations
of the critical properties of the model. It should be noted that
there is no standard technique for estimating the error bars in
the outputs of this class of methods other than repeating the
entire calculation a number of times which would be ex-
tremely laborious.

For the present analysis a density-of-states-function tech-
nique based upon the same method as in Ref. 12 was used
though with considerable numerical improvements for all L
studied here �adequate improvements to the L=512 data set
would unfortunately have been too time consuming�. The
microcanonical �energy dependent� data were collected as
described in Ref. 11. We use standard Metropolis single spin-
flip updates, sweeping through the lattice system in a type-
writer order. Measurements take place when the expected
number of spin flips is at least the number of sites. For high
temperatures this usually means two sweeps between mea-
surements and four or five sweeps for the lower temperatures
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we used. Note that in the immediate vicinity of �c the spin-
flip probability is very close to 50%.

For L=256, the largest lattice studied here, we have now
amassed between 500 and 3500 measurements on an interval
of some 450 000 energy levels, where most samplings are
near the critical energy. For L=128 we have between 5000
and 50 000 measurements on some 150 000 energy levels.
For L�64 the number of samplings is of course vastly
bigger.

Our measurements at each individual energy level include
local-energy statistics and magnetization moments. The mi-
crocanonical data were then converted into canonical
�temperature-dependent� data according to the technique in
Ref. 13. This gave us energy distributions from which we
may obtain energy cumulants �e.g., the specific heat� and
magnetization cumulants �e.g., the susceptibility�.

Typically around 200 different temperatures were chosen
to compute these quantities with a higher concentration near
�c particularly for the larger L so that one may use standard
interpolation techniques on the data to obtain intermediate
temperatures. Magnetization distributions p�m��� ,L� have
also been obtained for sizes from L=4 to L=64.

IV. EQUILIBRATION TIMES

We can make a critical comparison between the Binder
parameter and the W parameter from the point of view of
equilibration time. At the heart of the W parameter is the
ratio U2= ��m��2 / �m2� just as the ratio U4= �m4� / �m2�2 is the
basis for the g parameter. Since the U4 ratio involves a fourth
moment we expect it to converge more slowly to its limit
value than U2, which contains only a second moment. We
have measured the speed of convergence by studying the
respective variation coefficients � /� as a function of the
number of measurements n. As usual � refers to the standard
deviation of the measurements and � to the average mea-
surement. This allows us to compare the two, though the
result will of course depend on the underlying distribution.
We have chosen to look at this for a simple-cubic lattice with
L=16 at �=0.225, a temperature slightly below where the
distribution changes from unimodal to bimodal.

We perform n measurements of �m�, m2, and m4 and take
their respective averages, giving us estimates of ��m��, �m2�,
and �m4�. The estimate of U2 is now simply ��m��2 / �m2� and
for U4 we use �m4� / �m2�2. Repeating these n estimates a
number of times �75 times for n=100 000 and 75 000 times
for n=100� gives us, in turn, an estimate of the variance �2

of the U2 and U4 estimates. As � we use the average U2 and
U4 estimates.

In Fig. 1 we show � /� versus n for U2 and U4 for the 3D
lattice with L=16. We have fitted lines with slope −1 /2 since
we expect the variation coefficient to decrease at the rate
1 /�n. We find that � /� scales as roughly 0.504 /�n for U2
and 0.886 /�n for U4. Squaring the factor 0.886 /0.504

1.76 gives that U4 requires 1.762
3.1 times as many mea-
surements as U2 to obtain the same statistical error � /� at
�=0.225.

The factor 1.76 is actually close to a worst case scenario
for this particular lattice. For higher temperatures, i.e., �

��c, this factor takes a value close to three and for lower
temperatures, i.e., ���c, the factor quickly approaches a
value close to four, Fig. 1 inset. It also turns out that this
worst case factor actually increases with L. For L=8 we
measured it to 1.74 at �=0.23 while for L=32 we found it to
be 1.83 at �=0.2225.

V. 3D ISING FERROMAGNET

The spin-1/2 Ising ferromagnet on a simple-cubic lattice
is an archetypical model system which has been very exten-
sively studied. Although there exist no exact results for any
of the critical parameters, �c, and the critical exponents are
known to high precision thanks to RGT theory, high-
temperature series expansions �HTSE�, and numerical simu-
lations �see Refs. 14–16�. There is consensus that for this
system �c
0.221655, and for the universality class �

0.630 and 	
0.81. We will test our W data against these
values shortly.

We show in Fig. 2 an overall view of the behavior of
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FIG. 1. �Color online� Variation coefficient � /� for U2 �red
circles� and U4 �blue squares� at �=0.225 for L=16 plotted versus
the number of measurements n together with fitted lines with slope
−1 /2. The red line is 0.504 /�n and blue line is 0.886 /�n. The inset
shows the ratio between these two for a range of �, having the
minimum 1.76 at �=0.225.
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FIG. 2. W�� ,L� versus � for L=4 �smallest slope� to L=256
�strongest slope�. The inset shows a zoomed in picture near �c.
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W�� ,L�. It can be seen that on the scale of the figure the
curves W�� ,L� appear to intersect at a unique L-independent
inverse temperature which can obviously be identified with
�c. The derivatives �W /�� peak strongly at �W max�L� which
at large L approaches �c, see Fig. 3.

A blow up of W�� ,L� in the critical region, Fig. 2 inset,
shows that there are finite-size corrections leading to a weak
size dependence of the �W�� ,L� ,W�� ,2L�� crossing points.
A plot of the intersection temperatures �cross versus 1 /L	+1/�,
where 	+1 /�
2.40, is shown in Fig. 4 for both W and g
�the points for L=64, 128 are not visible due to the fast data
collapse�. Fitting a straight line to the W points for L�6
versus 1 /L	+1/� gives �c=0.2216541�5�. We have here ex-
cluded the point L=4 since it appears to deviate from the
others in this case. The error estimate is based on how the
result depends on excluding a point from the fit and on al-
lowing the exponent 	+1 /� to take different values between
2.39 and 2.41. In fact, a best fit of the crossing points for
L�6 to a simple formula c0+c1L−� gives on average, taken
over fits after excluding one point, c0
0.2216540�3� and
�=2.40�3�, where the error estimates correspond to the stan-
dard deviation of the data set. Since �=0.630 is known to a
higher precision we therefore get 	=0.814�30� which agrees
with previous estimates.

Both of our �c estimates are consistent with the most
precise values from standard Monte Carlo �MC� simulations
�c=0.22165452�8� �Ref. 16� and �c=0.2216546�3�,12 and
from high-temperature series analyses, �c=0.221655�2�.15

However, the g data seem to require more correction to scal-
ing than the W data. If we want to fit a line to the crossing
points for g versus L	+1/� then we need to drop two more
points �L=6,8� to get anything like this precision on a �c
estimate.

Henceforth setting �c=0.2216541, let us proceed to in-
vestigate the derivative data ��W /����c

and ��g /����c
against L, which are shown as log-log plots in Fig. 5. The
slopes should be equal to 1 /� in the large L limit. It can be
seen that both series of points lie close to 1/0.63 �slope of the
lines�.

Let us make a more demanding analysis of the slopes 1 /�
by fitting lines to k-subsets of the points. Since we have nine
data points, i.e., we use L�4, each k then gives us � 9

k � dif-
ferent slopes. If the data show any sign of inconsistency or a
dependency on L then we expect this to show up in the form
of different medians and/or different slope intervals. How-
ever, we get �=0.6308 for k=3, . . . ,9 with the same value
for both median and mean. The quartile deviation of each
slope set is about 0.0004 for k=4, . . . ,7. We therefore re-
ceive the estimate �=0.6308�4�. It should be noted that only
for the last three points of the g data do we receive a slope
that agrees with this estimate.

An alternative way of locating �c is to locate the tempera-
ture where the scaling of the derivatives depend least on
different L. Choosing e.g., subsets of size k=4 the narrowest
set of slopes is obtained for �c=0.2216541, give or take a
step or two in the last decimal. Since this agrees with our
previous two estimates of �c we can now give our final es-
timate of the critical temperature as �c=0.2216541�2�.

Having established �c and � we plot the derivatives of W
and g in the more demanding form ��W /����c

/L1/� and
��g /����c

/L1/� in Fig. 6. The g data clearly show character-
istic FSS corrections, Eq. �4�, for small and moderate L while
the W data show only weak and apparently random scatter
due to statistical errors, i.e., the analogous correction term
for W��c ,L� appears negligible within the present precision.
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FIG. 3. �Color online� �W /�� versus � for L=32,64,128,256
where the maximum increases with L. The red vertical line is lo-
cated at �c=0.2216541.
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Thus though the finite-size corrections in g�� ,L� and
W�� ,L� at criticality and hence the corrections in the cross-
ing points are comparable, the corrections in the derivatives
are much weaker for W. This means that to extract an esti-
mate of � a two-parameter fit is sufficient for the W deriva-
tive data while a four parameter fit is needed for the g data.
This is important as it means that at least in the present case
the estimates from W��c ,L� are intrinsically more precise.

It was estimated in Ref. 16 that

g��c,L� = 0.69778�13��1 + 0.1788�36�L−0.82�3� + ¯�
�14�

and our g data, Fig. 6, are in excellent agreement with this
correction factor for g��c ,L�. We estimate the critical values
to be W��c ,��=0.468�2� and g��c ,��=0.697�2�, see Fig. 7,
where the error stems from which points are excluded from
the fit. The value for g agrees with the formula above but the
accuracy is not as good. Also, we would like to mention that
at the temperature where the magnetization-distribution
shifts from unimodal to bimodal, i.e., where ��2p�m� /�m2�0
=0, we found the asymptotic value of W to be about 0.208
and for g it takes a value near 0.433.

There are already many accurate estimates of � for the 3D
Ising universality group. Renormalization group studies14

give �=0.6304�13� and �=0.6305�25�. The main difficulty
concerning either HTSE or MC analyses lies principally with
the problem of properly allowing for corrections to scaling.
The amplitudes of the corrections vary from system to sys-
tem, favoring meta-analyses of data on many systems in the
same class. Butera and Comi15 obtain �=0.6299�2� from a
global analysis of HTSE data for Ising ferromagnets with
spin S running from 1/2 to � on both sc and bcc lattices, all
systems lying in the same universality class. Their sc S

=1 /2 HTSE results standing alone were consistent with this
value but were less accurate �0.632�2� or 0.6277�30� depend-
ing on the analysis method used�. Deng and Blöte16 obtain an
entirely independent global estimate �=0.63020�12� from si-
multaneous Monte Carlo analyses on a set of eleven systems
all in the same universality class. It is gratifying that the
present results on one single system are consistent with and
practically as accurate as these global “best estimates” from
HTSE and MC. It would be interesting to establish whether
the weak-FSS correction for ��W�� ,L� /����c

is a general
property or is specific to this particular system.

VI. CONCLUSION

We introduce an alternative distribution shape parameter
W�� ,L� for numerical studies of the critical properties of
model systems. As an illustration we use this parameter in an
analysis of extensive data sets obtained through a density-of-
states technique applied to simple-cubic S=1 /2 Ising ferro-
magnet samples of size up to L=256. In this system at least,
corrections to scaling for W��c ,L� are considerably weaker
than those for the canonical Binder cumulant g��c ,L� and
the equilibration time to obtain data to a similar degree of
precision is significantly lower. We obtain estimates for the
critical inverse temperature �c=0.2216541�2� and the critical
exponents �=0.6308�4� and 	=0.814�30�, based only on W
data, which are compatible with and almost as accurate as
values from previous Monte Carlo16 and high-temperature
series expansions.15
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